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Stochastic Processes Originating in Deterministic 
Microscopic Dynamics 

Detlef  Diirr, ~'2 Sheldon Goldstein, 1 and Joel  L. L e b o w i t z  1'3 

We investigate the probability distribution of the scaled trajectory of a test 
particle moving in an equilibrium fluid according to the laws of classical 
mechanics, i.e., if Q(t) is the displacement of the test particle we let QA(t) 
= Q(At ) / fA  and consider the distribution of the trajectory QA(t) in the limit 

A ~ 0e. The randomness of the motion is due entirely to the randomness of the 
initial state of the fluid, test particle, or both, and the process is generally 
non-Markovian. Nevertheless, it can be proven in some cases and we expect it to 
be true in many more that QA (t) looks like Brownian motion in the limit A ~ oo. 
Some results for simple model systems are presented. 
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1. INTRODUCTION 

This article is based on our work in progress concerning the motion of a 
test particle in an infinite classical mechanical system of particles, when this 
motion is viewed on macroscopic time and length scales. The test particle 
can, but need not, be mechanically identical to the other particles (the fluid 
particles) of the system. When it is identical we single it out by its different 
"color." In either case we expect that on the macroscopic scale many 
details will become unimportant and the motion of the test particle will 
have a universal form, i.e., Brownian motion. 
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The mathematical formulation of our problem is as follows: Let Q, V 
denote the position and velocity of the test particle and (qg,vi) i = 1, 
2 . . . . .  the positions and velocities of the fluid particles. We assume that at 
time t = 0 the microscopic state of the system, given by (Q,  V, ql, vl . . . .  ), 
is distributed according to the appropriate conditional Gibbs distribution 
with the initial position Q0 of the test particle given, say Q0 -- 0, i.e., apart 
from the position of the test particle the system is in thermodynamic 
equilibrium. We now observe the motion of the test particle, i.e., its position 
Q(t) and its velocity V(t)  as functions of time t. Q(t)  and V(t)  define 

stochastic processes on the probability space of microscopic states, for 
which the average will be denoted by E ( ) .  Note that E ( V ( t ) )  = O. 

Since we wish to describe the motion of the test particle on a macro- 
scopic scale we introduce the process 

QA(t) = Q(A t ) /~ -A  

and consider the limit A ~ ~ .  We have that 

= A -1/2foAtV(s)ds QA(O 

or setting A = N, an integer, 

N - - I  r ' _ _  7 N - 1  

j=o L jt ~ j=o 

so that if the increments 

j--0 . . . . .  

were independent, it would follow from the central limit theorem (CLT) 
that QN(t) converges in distribution to a Gaussian random variable as 
N ~  m. Moreover, it would follow from Donsker's invariance principle (~) 
that the process QA (t) converges in distribution to the Brownian motion 
WD(t), QA---~ WD, where D - - 2 f ~ E ( V ( O ) .  V(t ) )d t  and E(W2D(t))=--Dt. 
QA ~ WD means that for any "continuous" function f on the space of 
trajectories Q(t), 0 <<. t <  cr E ( f ( Q A ) ) ~  E ( f ( W D ) )  as A ~ .  This im- 
plies, in addition to the convergence of all finite-dimensional distributions 
for QA, i.e., the joint distributions of QA (tO, �9 � 9  QA (tn), tl < " " " < tn, to 
the corresponding distributions for WD, the convergence of such quantities 
as the maximum of Q(t), 0 <~ t <~ T. In fact, QA ~ WD implies that if one 
does not observe the motion on too fine a scale, the process QA cannot be 
distinguished from the Brownian motion W D for A sufficiently large. 

In an infinite classical system the increments Xj will not be indepen- 
dent, in part because Xj will be correlated with the velocity of the test 
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particle at the end of the j th  time interval, which will affect the increment 
Xj+ L in the next interval, and in part because some of the interactions 
experienced by the test particle in different time intervals will involve the 
same or correlated fluid particles. For example, even in the very simple case 
of a spherical test particle undergoing elastic collisions with an (otherwise) 
ideal gas of point particles, the test particle may recollide, perhaps after a 
very long time, with the same fluid particle. Thus from the past trajectory 
of the test particle we may extract information about its future evolution. It 
follows that, far from having independent position increments, the process 
(Q(t), V(t)) will not be Markovian. 

However, since the increment in position over a macroscopic time 
interval is the effect of a large number of interactions, most of which 
involve only fresh fluid particles which were not involved directly in 
interactions with the test particle prior to this interval, we expect that QA (t) 
can be decomposed into a sum of increments which are approximately 
independent and that QA --~ WD. We also expect that generally we will have 
D > 0. If QA ~ WD with D > 0, we say that the system (or the test particle) 
has diffusive behavior. [Since Wo(t ) = 0 the convergence QA ( t ) ~  W 0 does 
not well express diffusive behavior.] 

The formula 

D = 2f0~E(V(0  ) �9 V(t))dt (1) 

for the diffusion coefficient is suggested by the observation that if the 
velocity autocorrelation function 

R(t)  = e ( v ( 0 )  �9 V(0 ) 

is integrable, then 

lim t - ' E ( Q ( t )  2) = D 

where D is given by (1). If the past and future in the velocity process V(t) 
are sufficiently independent, R(t) will be integrable and D will be well 
defined and finite, D < ce. 

The integrability of the velocity autocorrelation function may be 
regarded as a minimal condition for QA ~ WD. It is, however, not sufficient 
because (i) it does not guarantee sufficient independence for a CLT, and 
(ii) no matter how strong the independence properties, nothing precludes 
the possibility that D = 0. [Consider, for example, a particle undergoing an 
Ornstein Uhlenbeck process in a harmonic potential: 

dQ= Vdt 

dV = ( - ' / Q  - 8V)dt  + o d W  1 
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The Markov process (Q(t),  V(t)) has very strong independence of past and 
future; the distribution of Q(t), V(t) converges to equilibrium exponentially 
fast. Nonetheless D = O, precisely because of the existence of a (normaliz- 
able) equilibrium distribution to which (Q(t),  V(t)) converges in distribu- 
tion.] 

We remark that though the integrability of the velocity autocorrelation 
function does not in general guarantee diffusive behavior, there is one case 
in which it does, namely, when the velocity is a function of the state of a 
reversible Markov process. ~2'3~ However, this cannot be the case for a 
purely mechanical system. 

2, S O M E  RESULTS 

From a physical point of view, the most interesting of the models for 
which we would like to establish diffusive behavior is the three-dimensional 
system of interacting particles, e.g., the hard sphere gas, where the infinitely 
extended fluid consists of identical hard spheres which interact via elastic 
collisions. The test particle may be a colored fluid-sphere or it may be a 
dynamically distinguishable sphere having, say, a different mass or radius. 
A simplified version of the latter case is the system already mentioned in 
which the fluid consists of point particles, so that fluid particles do not 
interact with each other, i.e., a hard sphere in an ideal gas. In one dimension 
the models described reduce to the case of a hard point system where the 
fluid can always be taken to be an ideal gas. If the mass of the test particle 
in this system of particles moving on a line is the same as that of the fluid 
particles we have the equal mass case; otherwise, we have the unequal mass 
case. 

Harris and Spitzer ~4'5~ (see also Jepsen ~ 6) and Lebowitz and Percus ~ 7~) 
have established diffusive behavior for the equal mass case. Their argument 
is very special, and does not extend to the unequal mass case, let alone to 
higher dimensions. It exploits the fact that in the equal mass case the 
motion of the test particle may be obtained by keeping track of the "pulse," 
in an ideal gas of completely noninteracting "pulses," on which the test 
particle is riding: when pulses cross, the test particle changes its horse. This 
description allows them to express the distribution of Q(t) in terms of the 
easily computable probabilities of certain "elementary" events. 

Sinai and Bunimovich ~ 8,9) have established diffusive behavior for the 
two-dimensional periodic Lorentz gas. Here the test particle is a point 
particle moving with unit speed among a periodic array of convex scatters 
so arranged that the time between collisions is bounded away from zero 
and infinity. The only randomness lies in the initial distribution of the 
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position and direction of motion of the test particle, which is assumed to be 
given by a smooth density. [If this distribution is uniform over a fundamen- 
tal domain, the velocity process V(t) is stationary.] Their proof exploits the 
existence of a "Markov partition," which provides a representation in terms 
of a symbolic dynamics in which past and future are asymptotically 
independent. 

These two models are essentially the only completely mechanical ones 
for which diffusive behavior has been established. In particular, diffusive 
behavior has not been established, though it is certainly expected, for the 
unequal mass case in one dimension, for a sphere in an ideal gas (in two or 
more dimensions), for the hard sphere gas in three or more dimensions, and 
for the Lorentz gas with random scatterers in two or more dimensions. The 
fact that diffusive behavior is not even expected for the hard sphere gas in 
two dimensions is connected with the phenomenon of long time tails in the 
velocity autocorrelation function: Computer simulations and physical argu- 
ments indicate that D = oo in this case. (10) 

3. METHODS AND MODELS 

Establishing diffusive behavior is referred to in the mathematical 
literature as proving a functional CLT or an invariance principle. The basic 
results provide conditions under which a stationary process V(t) with 
E(V(t)) = O, not necessarily arising from a mechanical system, leads to 
diffusive behavior: QA ~ HID, where QA (t) = A -1/2fAtV(s)ds. These condi- 
tions always involve, in many inequivalent forms, an expression of asymp- 
totic independence of past and future for the process V(t). Some of them 
are referred to as mixing conditions, of which there are many, of varying 
strengths, all of which are stronger than the familiar notion of mixing used 
in ergodic theory; the process V(t) is mixing in the ergodic theoretic sense 
if 

E(fg,) - E( f )E(g) , -~  0 (2) 

where f and g are square-integrable functions of { V(t))t~ R =-- V(.) and 
L(V(- ) )  = g(V(z+ .)). For example, V(t) is called a-mixing (strongly 
mixing, Rosenblatt  mixing) if sup[E(fg)-E(f)E(g)]=-a( 'r)~O, as 
r  0% where the sup is over all (measurable) functions f, If[ ~< 1, depend- 
ing only upon the past of the velocity process [i.e., on V(t) for t < 0] and g, 
[gl < 1, depending only upon the future after time ~" [V(t), t >/~-]. 

It can be shown (ll) that a(~-) provides an upper bound for the velocity 
autocorrelation function: If V(t) has n > 2 moments, E([ V(t)l" ) < oe, then 

E(V(O)" V('r)) <~ consta('r) 1-2/n (3) 
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Moreover if V(t) is a-mixing with 

fo~a(t)l-2/ 'dt< oe (4) 

then QA -~ Wo. If (4) is satisfied we say that the process V(t) is rapidly 
a-mixing. Diffusive behavior follows from rapid a-mixing once D > 0 has 
also been established. 

We remark again that the question of whether D > 0 is frequently 
nontrivial. A simple condition guaranteeing D > 0 is described at the end 
of this paper. 

Rapid a-mixing is generally difficult to establish; in fact, it is usually 
quite difficult to obtain merely a good estimate of the velocity autocorre- 
lation function. However, in case the velocity is a function of the state of an 
ergodic, mixing Harris process (12,13) we can begin to get a handle on a(r).  
A Markov process X(t), with transition probability ~2 [~r2(A) is the 
probability that X(~-) ~ A given that X(0) = x] and stationary distribution 
~r [ f~r (dx)Tr j ( - )=  ~( . ) ]  is a Harris process if ~r x overlaps (i.e., is not  
mutually singular with respect to) ~r for ~- sufficiently large. If the process 
also has no nontrivial invariant sets, we have a mixing Harris process and 

[[Tr~ - ~r[[---- sup [~rx~(f)- 7r(f)] ,_~o)0 
If(x)l-< 1 

NOW suppose the velocity V(t) = V(X(t)) is a function of the state at 
time t of a mixing Harris process. Then, using the Markov property, it is 
easy to see that a(~') < f~r(dx)II~rx* - ~][, so that V(t) is a-mixing. More- 
over, if we have some fairly weak control over the "overlap" of r and r 
in the transition probabilities as we vary "r and the starting points x and x' 
- - in  which case we say that X(t) is a good mixing Harris process--the 
decay of l[ aJ - all will be sufficiently fast that V(t) is rapidly a-mixing. (13) 

We now describe a couple of "one-dimensional" mechanical models 
for which we believe diffusive behavior can be established by representing 
the velocity process as a function of the state of a good mixing Harris 
process.(13) 

(i) The test particle is a vertical line segment (stick) of length 1 
centered on the x axis. This stick, which cannot rotate and can move only 
horizontally, interacts with a two-dimensional ideal gas of fluid particles, 
undergoing elastic collisions which do not alter the y component vy of the 
fluid particle velocities. The velocity process will be stationary if the 
distribution of the x component of the fluid particle velocities is Max- 
wellian, for any distribution of vy. Since the stick cannot recollide with a 
fluid particle once it leaves the strip S of length 1 centered around the x 
axis, we obtain a stationary Markov process by observing only the particles 
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inside S, keeping track of positions only relative to the stick. Suppose now 
that for all fluid particles ]@ > a > 0. Then this process should be a good 
mixing Harris process, since all fluid particles in S at t = 0 will have been 
replaced by fresh particles by time t = 1/a .  

(ii) Suppose now that the stick (of length 1) is centered on, and 
perpendicular to, the circle of radius 1 centered at the origin., Suppose again 
that the stick interacts via elastic collisions with a two-dimensional ideal 
gas, whose particles are also elastically reflected from a circular wall of 
radius 1/2 centered at the origin. Now V represents the (angular) velocity 
of the stick around the "race track," so that Q(t) is the angle O(t) attained 
by time t, where O(t), t >/0, - oo < 0 < 0% is continuous. We obtain a 
stationary Markov process, which again should be a good mixing Harris 
process, by observing only particles in the annulus S of inner radius 1/2 
and outer radius 3/2. Though it is now possible for fluid particles to remain 
in S for an arbitrarily long time, we can guarantee their departure by 
sending into S appropriate fluid particles. 

In the models of primary interest rapid a-mixing is probably too much 
to demand. Consider first the equal mass case in one dimension. Jepsen (6) 
has shown that E(V(O). V( t ) )~t  -3. Since the velocity distribution is 
Maxwellian, V(t) has moments of all orders; it thus follows from (3) that 
a(~-)/> constt -(3+~, e < 0, which suggests that establishing (4) may, at 
best, be quite delicate. In fact, estimates involving slow fluid particles 
suggest that a(~-) is bounded away from zero, so that V(t) is not even 
a-mixing, and this is true even in the unequal mass case, where we expect a 
much faster (perhaps exponential) decay of the velocity autocorrelation 
function. 

There are conditions for diffusive behavior, weaker than rapid a- 
mixing, which do not require that the entire future of the velocity process 
be asymptotically independent of the past, nor even that this be true of the 
velocity V(t) at a single large time t. For example, suppose V(t) is a 
stationary ergodic process with n/> 2 moments, and let p = n/(n - 1). If 
the conditional expectation l~(~-) of V(~) given the past [V(t), t ~< 0] 
satisfies 

f0~ll l)( t)lledt < oo (5) 

then QA -~ Wa. Here II V(t)llp -- [E([ 9(t)lP)] 1/p. Moreover, if [[ Q(t)llp is 
unbounded (as t--> oo) then D > 0 and we have diffusive behavior. This 
result is based on a circle of ideas revolving around the martingale 
difference CLT. (1'2) 

It appears likely that (5) is satisfied in all the models discussed here, 
though proving that this is so is probably quite difficult. Note that since 
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l[ ~(T)IIp < consta( 'r)  (n-2)/2, the condi t ion  (5) is weaker  than  r ap id  a-  
mixing. Nonetheless ,  unless the veloci ty  is a func t ion  of the state of a 
reversible M a r k o v  process,  so tha t  the sel f -adjointness  of the genera to r  can  

A 

be exploi ted,  1[ v(~-)llp is diff icult  to es t imate  wi thout  employ ing  M a r k o v i a n  
me thods  which p rov ide  a good  es t imate  for a(~).  F o r  example ,  this is the 
case in the models  (i) and  (ii) in which the veloci ty  is a func t ion  of the state 
of a good  mixing  Har r i s  process.  
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